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A B S T R A C T   

The ideal stock assessment would be able to estimate all of the key parameters related to population processes 
within a framework that assigns appropriate weight to the data, fits the data adequately, and captures all sources 
of uncertainty related to estimation, including model uncertainty, process uncertainty, and observation uncer
tainty. The aim of good practice guidelines is to avoid the pitfalls of earlier analysis methods, and consequently 
provide assessments that reflect objective scientific information on which management decisions can be based. 
This paper outlines a framework for the component of a stock assessment related to fitting population dynamics 
models to monitoring data to support decision making, which follows from what would be considered good (but 
not necessarily best) practice in the field. The paper identifies current good and best practices related to selecting 
a model structure, parameterizing growth, recruitment, natural mortality and the stock-recruitment relationship, 
as well as how to select among model configurations based on diagnostics and weight data and priors within 
assessments based on the existing literature, including past Center for the Advancement of Population Assess
ment Methodology (CAPAM) workshop reports and the results of simulation studies that explored the perfor
mances of different ways to configure stock assessments.   

1. Introduction 

Fisheries stock assessments form the quantitative basis to support 
decision making. They are used primarily to provide estimates of stock 
status (biomass and fishing mortality relative to reference points), esti
mates of catch limits / effort that will achieve management goals, often 
based on harvest control rules, and to form the basis for projections and 
management strategy evaluations (MSE). The ‘ideal’ stock assessment is 
based on a model of the population dynamics that adequately matches 
the reality of the system being modelled, capturing just the correct 
number of processes to enable accurate and precise outcomes to be 
created. The ideal stock assessment would be able to estimate all of the 
key parameters related to natural mortality, growth, recruitment, 
selectivity and movement, within a framework that assigns appropriate 
weight to the data, fits the data adequately and captures all sources of 
uncertainty related to estimation, including model uncertainty, process 

uncertainty, and observation uncertainty. Reality naturally seldom 
matches this ideal, and the aim of best (or good) practices is for stock 
assessments1 to come as close as possible to the ideal given the limita
tions of system understanding, data quality and quantity, and compu
tational limitations. 

The earliest quantitative model-based stock assessments were based 
on simple production models and virtual population analysis (see the 
guides for conducting these methods and other early methods of stock 
assessment by Gulland, 1969, 1983, 1988 and Pauly, 1984). These 
methods have a limited number of options so the number of types of best 
practices are quite limited. For example, for production models the de
cisions to make relate to the form of the production function (e.g., 
Schaefer, Fox or Pella-Tomlinson), whether the errors are assumed to be 
observation or process, how to quantify uncertainty, and how to weight 
alternative indices of abundance. For virtual population analysis, the 
key decision is related to the “tuning algorithm” used to set the terminal 
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numbers-at-age for each cohort (equivalent to the terminal fishing 
mortalities) (e.g., Pope and Shepherd, 1985). 

Contemporary methods of stock assessment are based on the ‘inte
grated analysis’ paradigm, in which the model of the population dy
namics is developed separately from that of the model that relates the 
data to the population dynamics model (the observation model). Stock 
assessments based on this paradigm have increased in sophistication 
since the original idea was outlined by Fournier and Archibald (1982) 
and several major stock assessment software packages now exist that 
implement various forms of integrated analysis assessment (e.g., a4a: 
Jardim et al., 2015; Stock Synthesis: Methot and Wetzell, 2013; CASAL 
[C++ Algorithm Stock Assessment Library]: Bull et al., 2012; 
MULTIFAN-CL [MULTIple length Frequency ANanlyis - Catch at 
Length]: Fournier et al., 1998; GADGET [Globally applicable Area Dis
aggregated General Ecosystem Toolbox]: Begley, 2014; SAM 
[State-space Assessment Model]: Nielsen and Berg, 2014; Berg and 
Nielsen, 2016; and WHAM [Woods Hole Assessment Model]; Miller and 
Stock, 2020; Stock and Miller, 2021) These packages contain myriads of 
options for the model of the population dynamics and that of the 
observation process, meaning that given a single data set, the final 
assessment may depend on the philosophy of the analyst. However, 
while professional judgement is always part of statistical modelling, the 
expectation is that analysts make use of what is generally considered 
best (or at least good) practice. 

The technical and statistical sophistication of the methods used to 
construct and fit integrated stock assessments means that given a data 
set, different analysts may construct quite different assessments. Ralston 
et al. (2011) and Punt et al. (2018) highlight that the variation in 
biomass trajectories among assessments of the same stock conducted in 
different years can be attributed not only to additional data points for 
existing data sources and the availability of new data sources, but also to 
the choices made by the analysts and the groups tasked to review draft 
assessments. As will be noted below, these choices relate to many 
components of the population dynamics model used for assessment 
purposes, the data and how they are weighted, and most recently the 
statistical paradigm used for parameter estimation, with methods that 
treat model parameters as random effects becoming increasing common 
but underutilized (e.g., Nielsen and Berg, 2014; Thorson, 2019). 

The importance of best practices (or at least good practices) cannot 
be overemphasized given the consequences of inappropriate decisions 
when conducting stock assessments on the ability to achieve manage
ment goals as well as the credibility of the scientific process. The 
workshops conducted as part of Center for the Advancement of Popu
lation Assessment Methodology (CAPAM) [Selectivity: Maunder et al. 
(2014); Growth: Maunder et al. (2016); Data weighting: Maunder et al. 
(2017), Diagnostics: Maunder et al., In press; Recruitment: Sharma et al. 
(2019); Spatial structure: Cadrin et al. (2020); Natural mortality: Hamel 
et al. (2023); Next generation stock assessment packages: Hoyle et al. 
(2020)] have established the basis for best practices for stock assess
ment. Several jurisdictions have been developed Terms of Reference for 
conducting stock assessments, which outline the requirements for stock 
assessment reports, and to assist with the review process (e.g., PFMC, 
2020) and some ‘acceptable’ practices have been developed (e.g., PFMC, 
2021). However, to date, no synthesis of good or best practices for how 
to conduct contemporary ‘statistical’ methods has been conducted, 
although several texts on stock assessment (e.g., Hilborn and Walters, 
1992; Quinn and Deriso, 1999; Haddon, 2011) provide suggestions, 
which the best practices of this paper build on. 

There is consequently a need to synthesize good and best practices 
for conducting stock assessments, which likely depend on the aims of the 
assessment (e.g., to provide unbiased estimates of current and historical 
biomass, versus to provide precise estimates of biomass for use in har
vest control rules). Table 1 summarizes the factors considered in a stock 
assessment that analysts need to take into account when constructing an 
assessment based on the perspective of the author. There are many other 
decisions that need to be made when conducting stock assessments, but 

in the experience of the author the items in Table 1 are the decisions that 
are most commonly influential in terms of inferences about stock status 
and levels of sustainable catch. 

This paper therefore aims to synthesize previous work on good 
practices related to fitting integrated population dynamics models to 
monitoring data based on the work of CAPAM and other research, with a 
view to providing a guide to conducting stock assessments. It illustrates 
the some of consequences of not following best practices using a set of 
simulations based on a simple assessment (see Supplementary Appendix 
A for a mathematical description of the operating model on which the 
simulations are based and the various estimation methods that are 
tested2). The final section synthesizes the rest of the paper in the form of 
a ‘recipe’ that should lead to ‘good’ assessments, with a clear focus on 
assessments for populations for which there are minimally reliable data 
on removals, an index of abundance, and some measure of population/ 
catch composition. The paper will distinguish between “good” and 
“best” practices given the practical and computational constraints when 
conducting assessments. The quality of an assessment depends on the 
available data. However, developing good/best practices for data 
collection is beyond the scope of this paper – and in most cases assess
ments are required irrespective of the data available. The recipe is 
focused on conducting stock assessments, but most of good and best 
practices also apply to the development of the operating models for 
management strategy evaluation (Punt et al., 2016). 

Table 1 
The questions that must be answered when conducting a stock assessment that 
are most influential in terms of results for a baseline standard assessment.  

Basic structure 
How is the spatial / stock structure of the assessment selected? 
How are the number of sexes, age- and length-classes selected? 
What is the time period considered by the model, including the projection period? 
What is the model time-step? 
How are the fisheries and surveys selected and then aggregated for analysis? 
Is the stock in quasi-equilibrium at the start of the modelled period? 
Biological parameters 
How is natural mortality modelled (functional form and age-, sex-, and time- 

varying?)? 
How is growth modelled (functional form, empirical vs. parametric, and age-, sex-, 

and time-varying?)? 
How are the growth and natural mortality parameters set (estimated, with priors, or 

based on auxiliary analyses) 
Stock and recruitment 
Which functional form and which parameters estimated? 
Which parameters are estimated and which are pre-specified based on auxiliary 

information? 
Are recruitment deviations treated as random effects or is penalized likelihood 

applied? 
How is account taken of the lognormal bias-correction factor? 
Fishery and survey Selectivity 
Is selectivity a function of age, size or both? How flexible is the relationship? 
Does selectivity vary over time and/or between sexes? 
Is selectivity asymptotic for some or all of the fisheries and surveys? 
Diagnostics 
Which diagnostics to apply? 
Can diagnostics identify model mis-specification and help with model weighting? 
Data weighting 
How to specify the initial weights for each data source / prior? 
How to update the weights given model fit? 
General issues 
Are recruitment deviations treated as random effects or is penalized likelihood 

applied?  

2 The simulation study is designed so that a self-test leads to unbiased and 
fairly precise estimates of management- related quantities (Fig. S.5; Table S.5). 
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2. Population models, spatial structure and process error 

2.1. Population models 

There are many ways to conduct a stock assessment that aims to 
estimate biomass and how it has changed over time in response to re
movals from the population and environmental effects. The most com
mon of these are biomass dynamics (aka surplus production) models, 
age-structured models and size-structured models. Most model-based 
assessments are conducted using age-structured models, with size- 
structured models used primarily for hard-to-age species such as 
prawns, crabs and rock lobsters. Biomass dynamics models can be used 
to conduct stock assessments for species for which the only data are a 
time-series of catches and one or more indices of abundance (e.g., 
Winker et al., 2018). However, they are not used for the world’s primary 
fisheries, but might be for non-target and byproduct species. 

Age-structured models can be used to predict the population size- 
composition usually under the assumption that the distribution of size- 
at-age is not impacted by fishing (e.g., Methot and Wetzell, 2013). 
Consequently, unlike size-structured models, most age-structured 
models ignore the impact of size-selective mortality (Dichmont et al., 
2016). The disadvantage of using age-structured catch-at-size methods 
is that the modeled size-at-age distributions do not change over time. 
This is potentially consequential for stocks3 that are managed using a 
minimum legal size or for which selectivity is close to knife-edged (as is 
the case for many crab stocks) and experience very high fishing mor
talities for legal individuals, such that size-specific fishing mortality will 
change the size-at-age distributions in the population. Age-size models 
combine the benefits of age-structured and size-structured models 
within a single framework but at the cost of (substantially) increased 
computational costs. Deriso and Parma (1988) outlined a full 
age-size-structured population dynamics model and describe the likeli
hood function that could be used to estimate its parameters for Pacific 
halibut, Hippoglossus stenolepis, and Quinn et al. (1998) extended this 
approach by discretising the size distributions. Gilbert et al. (2006) 
created an age- and size-structured model for New Zealand snapper, 
Pagrus auratus, which allowed growth to be a function of both age and 
size and to vary over time, and Allen Akselrud et al. (2017) developed an 
age- and size-structured model and applied it to data for Pacific cod 
Gadus macrocephalus in the Eastern Bering Sea. Best practice would 
therefore be to use an age-size model, but these assessment methods are 
still in development and a key component of the next generation of stock 
assessment methods (Punt et al., 2020) so good practice is to base as
sessments on age- or size-structured models. 

Most stock assessments involve an annual time-step. However, some 
species, such as short-lived coastal pelagic species and prawns that grow 
quickly during the year require much shorter time-steps (e.g., quarters 
for South African anchovy: De Moor et al., 2011; weekly for prawns in 
northern Australia: Dichmont et al., 2003). 

The initial conditions for the model need to be specified. The ideal is 
to treat the numbers-at-age or -size at the start of the first year as esti
mable parameters (as is the case for the assessment of red king crab 
Paralithodes camtschaticus in Bristol Bay, Alaska, Zheng et al., 2021), but 
good practice is to compute the initial conditions by calculating 
numbers-at-age or -at-sizes under the assumption that the stock was in 
equilibrium given an estimated fishing mortality (which can be set to 
zero for populations for which catches are available since the start of the 
fishery) and then adding recruitment deviations to the resulting 
numbers-at-age thereby estimating the sizes of the cohorts that entered 
the population before the start of the modelled period. 

A final consideration is the first year considered in the model. This 

can be the first year with removals, the first year with reliable estimates 
of removals, the first year for which recruitment is informed by data, 
selected with the aim of providing management advice, or selected to be 
after all the things that might bias the assessment ended (e.g., large 
oceanic regime shifts, changes in fishing technology, erroneous or 
incorrect estimates of removals, and changes in management regimes). 

2.2. Spatial and stock structure 

A critical part of conducting a stock assessment is how to deal with 
spatial and stock structure. All fish and invertebrate populations exhibit 
spatial structure to some extent (Berger et al., 2017), which can be re
flected as spatial variation in demographic parameters as well as in 
fishing mortality (Cadrin et al., 2020). The consequences of 
mis-specification of spatial and stock structure include bias in estimates 
of management-related quantities and an inability to achieve manage
ment goals. Many studies have shown that accounting for space when 
conducting assessments reduces these problems to some extent, 
although often at the expense of reduced precision of model outputs 
(Punt, 2019, and references therein). 

Accounting for spatial structure can take two main forms apart from 
ignoring it altogether. The ‘areas as fleets’ approach (e.g., Berger et al., 
2012; Hurtado-Ferro et al., 2014; Waterhouse et al., 2014) approximates 
the spatial distribution by size and age caused by movement or differ
ences in exploitation rates or biological differences (e.g., recruitment) 
using selectivity. This approach is very widely adopted given that the 
underlying population dynamics model does not explicitly model spatial 
structure and hence there are fewer additional estimable parameters and 
computational demands than for spatial models. However, the ‘areas as 
fleets’ approach can lead to severe bias in estimates of 
management-related quantities (Punt et al., 2015; Supplementary Table 
S.8). The alternative (a true spatial model) is to base the assessment on a 
population dynamics model that explicitly allows for spatial structure. 
This involves dividing the population into a (small) number of spatial 
cells (but see the method of Dunn et al., 2015) and modelling movement 
among the cells. 

The key decisions to make when conducting a spatial assessment are 
(a) how many populations and subpopulations to include in the popu
lation dynamics model, (b) how recruitment and movement are to be 
modelled, and (c) the number of fleets and areas. The first (and often 
most important) step when conducting a spatial stock assessment is 
identify a conceptual model (or set of conceptual models) that charac
terize the system (how many populations and subpopulations and where 
they are likely to be found by sex, age, size, etc). This involves first 
selecting a definition for a ‘population’ and perhaps a ‘subpopulation’. 
Punt (2019) suggested defining a ‘population’4 as a biological unit that 
does not exchange individuals with other biological units, and ‘sub
populations’ as biological units that exchange individuals sufficiently 
often that their demographics are linked, such that dispersal from other 
subpopulations would constitute an appreciable proportion of the rate of 
recovery of a subpopulation that is depleted by fishing. However, this 
distinction between populations and subpopulations does not deal with 
the case in which there is exchange between biological units but of a 
magnitude that is too small to impact the population dynamics appre
ciably. In such cases, ignoring exchange is likely an appropriate (and 
simpler) practice. Other definitions of the terms “stock” and “popula
tion” exist (e.g., Goethel and Berger, 2017) and there would be value in 
the community reaching agreement of terminology. 

The following are potential stock structure ‘archetypes’: (a) a single 
population found in multiple areas, (b) a single population found in 
multiple areas but with no post-settlement movement, (c) multiple 
populations that are located in the modelled region with movement 

3 The term “stock” is used in this paper in the sense of a management unit 
while the underlying biological units will be referred to as “populations”. In 
some cases, “populations” are “stocks”, but this is not always the case. 

4 Punt (2019) used the terms “stock” and “sub-stock” for “population” and 
“subpopulation” as used here,. 
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among areas but no dispersal (permanent movement among pop
ulations), (d) multiple populations/ subpopulations located in the 
modelled region, with movement among areas and dispersal among 
populations/ subpopulations, (e) multiple populations/ subpopulations 
located in the modelled region, with movement among areas and 
dispersal among populations/ subpopulations and natal homing, and (f) 
multiple populations/ subpopulations located in the modelled region, 
but with no movement among areas or dispersal among them. Model 
configurations that explicitly include spatial structure should explore 
local and global density-dependence and allow for both annual and 
spatial deviations in recruitment about the stock-recruitment relation
ship (unless data show that the latter is inconsequential). 

Punt (2019) recommends starting with a large number of potential 
areas and reducing the number of areas based on data availability and 
model selection methods. Age- / length-frequency data for common gear 
types and tagging data can be used to identify areas that differ spatially 
in terms of population structure or biological characteristics (e.g., Len
nert-Cody et al., 2010, 2013; Maunder et al., 2022). In general, 
ecological boundaries among the spatial areas in an assessment are 
preferable. Unfortunately, in many cases there is not a clear boundary 
between populations (e.g., in situations with clinal changes in genetic 
structure). Consequently, often boundaries based on management ju
risdictions are the only possibility given data availability. However, this 
may be appropriate given these areas also usually define how manage
ment regulations will be implemented. 

There are many more possible options when constructing a spatially- 
structured rather than a spatially-aggregated population dynamics 
model, so it is best to start with multiple models and remove models that 
(a) cannot be supported by the data, (b) have convergence or 
confounded parameter problems, (c) are unable to the fit the available 
data, (d) lead to model mis-specification / retrospective patterns, or (e) 
lead to estimates that are inconsistent with conceptual basis for the 
model (e.g., estimates of movement that decrease rather than – as ex
pected – increase with age). Biological parameters (growth, natural 
mortality, fecundity) may differ among populations and subpopulations, 
but it would seem appropriate to place a prior on the extent to which 
these parameters differ among populations to ensure that the informa
tion for one population provides some information / bounds for the 
dynamics of the other populations. 

One of the major challenges associated with spatial models is how to 
parameterize the rates of movement and dispersal (and how they differ 
among ages and sexes). In principle, such rates can be estimated using 
changes over time in age- and size-compositions (e.g., McGilliard et al., 
2015), but generally estimation is based on integrating tagging data into 
the assessment by modelling multiple tagged populations, along with 
the actual population (e.g., Hilborn, 1990; Maunder, 2001; Goethel 
et al., 2019; Vincent et al., 2020). In principle, movement rates can be 
estimated outside of the assessment but the common problems of the 
inability to propagate uncertainty and the potential lack of consistency 
of assumptions remains. 

Spatial variation in population demography is a major challenge 
when applying spatial models. This is particularly the case for growth 
when size-composition data are a major source of information on 
abundance and trends because assuming (incorrectly) that growth is 
spatially-invariant will lead to differential estimates of population 
depletion even if this not the case in reality. Another concern with 
spatial variation in growth is how to model mean growth when animals 
move among areas. 

2.3. Modelling process error 

Process error, random natural variation about the expectation for a 
model quantity, is a key source of uncertainty for any stock assessment. 
Process error is usually included in stock assessments in the form of 
variation in recruitment about the stock-recruitment relationship. 
However, almost every process in a stock assessment (e.g., growth, 

recruitment, natural mortality, movement, and selectivity) is potentially 
subject to process error. Traditionally, process error has been included in 
stock assessments using “penalized likelihood” in which the deviations 
in a process about its expectation are treated as fixed effects parameters, 
with the model objective function extended to include a penalty in the 
form of a normal density with mean zero and a pre-specified standard 
error. Some authors have attempted to estimate the process error stan
dard error (e.g., Maunder and Deriso, 2003) within the penalized like
lihood framework, but any non-zero estimate is convergence to a local 
minimum. Fig. S.5 shows that it is possible to estimate the extent of 
variance in recruitment, particularly given reliable data on 
age-composition when the model is represented in state-space formu
lation. The ability to estimate the variance in recruitment will depend on 
how imprecise (and biased) the age data are, and the amount to which 
ageing error can be quantified. 

Process error variances can be estimated within the Bayesian para
digm given a prior distribution for these parameters, and within the 
frequentist paradigm by formulating the assessment as state-space 
model, which involves integrating out the random effects and maxi
mizing a marginal likelihood. Nevertheless, the estimates of process 
error variances can be quite imprecise (and even biased), as is clear from 
the simulations in Fig S.5. 

The ability to implement state-space stock assessments has increased 
considerably with the availability of Template Model Builder (Kris
tensen et al., 2016), and two stock assessment packages (SAM and 
WHAM) are formulated as state-space models. There are, however, 
constraints to applying state-space models including computational 
cost, the fact that attempting to estimate too many random effects 
processes can often lead to degenerative solutions (i.e., estimated zero 
variance for some sources of process error). Nevertheless, and 
notwithstanding the technical challenges associated with state-space 
models (in Bayesian or frequentist modes), their use remains best 
practice. 

3. The key processes: growth, selectivity, natural mortality and 
recruitment 

3.1. Growth 

Growth affects conventional age- and size-structured stock assess
ments in multiple ways (Francis, 2016): (a) to convert catches from 
weight to numbers, (b) to convert from numbers-at-age and -at-size to 
weight-at-age and -at-size, (c) to convert length-based selectivity to 
age-based selectivity, and (d) to compute expected length-compositions. 
Error when modelling growth can consequently lead to bias in estimates 
of management-related quantities, most noticeably when the only data 
available for assessment purposes are size-composition data, owing to 
the confounding between selectivity, growth and fishing mortality 
(Maunder et al., 2016). 

Many assessments model growth using parametric relationships. In 
the case of age-structured assessments, length-at-age is usually modelled 
using the von Bertalanffy growth equation or a generalization thereof 
such as the Schnute growth model (Schnute, 1981), with weight-at-age 
computed from length-at-age according to an allometric length-weight 
relationship, accounting for the effects of variation about the growth 
curve (Methot and Wetzell, 2013). In size-structured models, a 
size-transition matrix, where the expected growth increment is modelled 
parametrically, is used to represent the probability of animals growing 
from one size-class to another. Some assessment methods (such as AMAK 
and ASAP: Anon, 2015; Legault and Restrepo, 1998) do not model 
growth using a parametric form but instead specify weight-at-age (often 
by year) under the assumption that sampling for age-composition is 
sufficiently precise to enable the assumption that weight-at-age is 
known exactly (little ageing or sampling error) to be justified. This 
“empirical weight-at-age” approach can also be included in assessment 
frameworks such as Stock Synthesis. 
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Growth models should consider not only the expected growth 
increment but also how individual variation in growth is captured. It is 
often assumed that variation in growth can be approximated by a co
efficient of variation, which is usually assumed to be independent of age 
and expected length. This approach is consistent with the observation 
that variation in growth is most evident for asymptotic size (Lorenzen, 
2016), but this should be tested in applications. In general, all of the 
parameters of the growth curve should be estimated, and the von Ber
talanffy growth curve should be not be adopted automatically. Rather, 
alternative forms such as the general Schnute growth model and curves 
that allow for changes in growth rate with reproduction (e.g., Minte-
Vera et al., 2016) should be examined. Growth can be modelled 
non-parametrically (e.g., using a spline) but this is not common for 
statistical catch-at-age assessments. Age-length models (e.g., Allen 
Akselrud et al., 2017; Begley, 2014) can be used to capture individual 
variation in growth and hence the effect of fishing mortality on 
length-at-age (i.e., ‘the Rosa Lee phenomenon’). Taylor and Methot 
(2013) provide a computationally efficient way to allow for the Rosa Lee 
phenomenon by dividing the population into ‘platoons’, each of which 
has its own growth curve, but this feature has been used rarely in actual 
assessments. 

The data available to estimate growth can be divided into direct data, 
i.e., information from tagging on growth increments (commonly 
included in assessments for hard-to-age species such as prawns, crabs 
and rock lobsters; Punt et al., 1997, 2013), and on size-at-age, usually 
included in age-structured assessments in the form of conditional 
at-age-length data. The use of conditional-at-age data leads to an accu
rate characterization of growth because the effect of selectivity is 
accounted for when computing the model-predicted distribution of the 
age-composition of each size-class (Piner et al., 2016). In principle, data 
on the size-composition of catches or surveys provide information on 
growth, but size-composition distributions reflect the combined effects 
of growth, recruitment, fishing mortality rate and selectivity, requiring 
that selectivity be known to enable growth to be estimated accurately. 

There is strong evidence that growth varies by sex and over time 
(Stawitz et al., 2015; Thorson and Mine-Vera, 2016) and assessments 
should by default test for time-variation in growth and for 
sex-differences in growth rates. Time-variation in growth can be 
modelled within a stock assessment by assuming that the parameters of 
the growth curve differ among years and cohorts (Methot and Wetzell, 
2013) or that the growth rate by cohort depends on year-class strength 
(Punt et al., 2001). Modelling time-variation in growth using random 
effects for deviations in parameters from their expectations makes 
forecasting challenging, highlighting the value of identifying environ
mental covariates that explain interannual variation in growth in
crements or parameters (e.g., Punt et al., 2021a). 

3.2. Selectivity 

Stewart and Martell (2014) define selectivity as length- or age-based 
probabilities used to link observed composition data to model pre
dictions about population abundance-at-age/-size. Selectivity is a com
bination of two processes: availability (i.e., the probability that a fish of 
a specific age or size is in the same vicinity at the same time as gear 
deployment) and contact (or gear) selectivity (i.e., the relative proba
bility that a fish of specific age or size is caught given it is available to the 
gear) (Privitera-Johnson et al., 2022). Selectivity is perhaps the popu
lation process with the most options among which to choose and for 
which analysts differ the most. The three main decisions that need to be 
made when conducting assessments relate to whether selectivity is 
length- or age-based (or both), the functional form for selectivity, and 
whether (and how) allowance is made for time-variation in selectivity. 

Selectivity is often modelled as a function of length rather than of 
age, and it is tempting to assume that age-specific selectivity can be 
computed from length-specific selectivity according to Sf

a = Sf
La 

where La 

is the expected length of an animal of age a. Unfortunately, this esti
mator will be biased when there is variation in length-at-age. The correct 
estimator of the expected selectivity of an animal of age a is: 

Sf
a =

∫

Sd
L P(L|a) dL (1)  

where Sf
L is selectivity as a function of length, and P(L|a) is the proba

bility of an animal of age a being of length L (Methot and Wetzell, 2013). 
The selection between age- and length-based selectivity depends on the 
situation. For most cases, contact selectivity will usually be related to 
length-based processes so when contact selectivity is primary cause for 
non-uniform selection, length-based selectivity is the most appropriate 
decision. This is also the case when the population dynamics model is 
length- rather than age-structured (Punt et al., 2013). Table S5 and 
Fig. S5 show that length-based selectivity is difficult to estimate using 
only age-composition data. Age-based selectivity is an appropriate 
formulation when the only source of composition data is age data (no 
length-composition or conditional age-at-length data) or when avail
ability is age-based (e.g., due to ontogenetic shifts in distribution). An 
advantage of age-based selectivity is that there is no need to model 
growth explicitly and hence estimate P(L|a) though there is a need to 
account for weight- (or biomass-) at-age in most cases. 

In principle, the selectivity for each age-class can be treated as an 
estimable parameter, but in most cases selectivity-at-age (or –at-length) 
is governed by a parametric (or semi-parametric) equation. Unfortu
nately, the functional form assumed for selectivity may often be incor
rect or very inflexible (Lee et al., 2014). For example, it is common to 
assume that the selectivity is asymptotic (the oldest or largest fish are 
fully selected by the fishery), but both theory and empirical evidence 
indicate that fish movement and availability likely lead to some doming 
in most cases (Sampson et al., 2011; Sampson, 2014; Waterhouse et al., 
2014), and that misspecification can substantially influence assessment 
results (Ichinokawa et al., 2014; Wang et al., 2014; Privitera-Johnson 
et al., 2022). However, incorrectly assuming that selectivity is 
dome-shaped for all fleets can create a cryptic biomass (Crone et al., 
2013), and result in biased estimates of management-related quantities. 
Conversely, incorrectly assuming asymptotic selectivity will force the 
assessment towards a result that has higher total mortality and greater 
stock depletion and hence biased estimates of management-related 
quantities (Fig. S7). 

Crone et al. (2013) note that it is common practice in stock assess
ments to assume asymptotic selectivity for at least one fishery or survey 
to stabilize parameter estimation. This is because the declining limbs of 
the selectivity patterns when there is dome-shaped selectivity for all 
fisheries and surveys are inherently confounded with natural mortality 
and this confounding will often increase the uncertainty in abundance 
estimates. Assuming that selectivity for one fishery or survey is 
asymptotic will lead to more pessimistic estimates (and poorer fits to 
data) than dome-shaped selectivity. 

Privitera-Johnson et al. (2022) compared asymptotic (logistic) and 
dome-shaped (double-normal) and flexible (spline-based) selectivity 
patterns using simulations for three species. They also explored the case 
in which the selectivity pattern is chosen using AIC. The results suggest 
that using AIC to select among selectivity forms is not robust, including 
when model misspecification is absent. The use of double normal 
selectivity was found to be most robust to uncertainty in the true form of 
selectivity. However, the double normal form performed poorly if M was 
estimated along with the other model parameters. Similarly, use of 
flexible parametric methods, such as splines, performed adequately with 
informative data, but poorly when the catch series exhibited low 
contrast and age-composition data were not available from the start of 
the fishery. This suggests that the best practices for selectivity will 
depend on knowledge of the likely information content of the data. 

The flexibility of the double-normal selectivity pattern is often suf
ficient to mimic the wide range of single-peaked shapes that may be 
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expected from a single fishing gear type. The degree of stiffness in 
fishery selectivity seeks to strike a balance between two goals. One goal 
is to be highly flexible so that the modelled selectivity will be highly 
informed by the fishery size- and age- composition data, causing the 
modelled removals to mimic the data, as in VPA. The other goal is to 
obtain direct inference about the population from which the fishery is 
taking fish. Here a stiff (few parameter) selectivity retains more degrees 
of freedom such that the fishery size- and age- composition data are a 
sample of the population as filtered by that stiff selectivity. Integrated 
analysis models seek to accomplish both goals. In an ideal, data-rich 
setting the best configuration should be to use a very stiff and experi
mentally verified selectivity for the survey and a very flexible selectivity 
for the fishery. 

Generally, fishery selectivity patterns should be chosen that have the 
fewest parameters, and allow an acceptable fit to the available compo
sition data. As surveys are designed to at least use the same fishing gear 
throughout, a good reason to use more complex patterns than logistic or 
double-normal would be required for those. If a fishery has fairly ho
mogenous gear, stable fishing behaviour, and stable areas of fishing, a 
similar argument applies there as well. In the case of a fishery with 
mixed gear types, an opportunity exists to use a less restricted pattern 
shape, as provided by the age-based random walk. 

Allowing for some time-variation in selectivity either where selec
tivity is treated a random effect (e.g., Nielsen and Berg, 2014; Berg and 
Nielsen, 2016) or by superimposing autocorrelated random deviations 
in age (or size) and year on an underlying parametric form (e.g., Xu 
et al., 2019) is appropriate, especially when the extent of variation and 
autocorrelation are estimated. Care should be taken when adopting this 
approach given it can lead to complex (and perhaps unrealistic) patterns 
selected to match changes in age-/size-composition, perhaps due to 
combining data for multiple gear-types into a single fleet. 

3.3. Natural mortality 

Of the key parameters determining the population dynamics of ma
rine species, natural mortality (M) is the least well known because direct 
data on deaths due to natural causes are seldom available (exceptions 
are species such as bivalves that leave behind articulated values; Doer
ing et al., 2021; methods based on acoustic tagging, etc. Maunder et al., 
2023). Estimation of M is made even more challenging because trends in 
M, recruitment and selectivity tend to be confounded (Butterworth and 
Punt, 1990; Thompson, 1994). For example, assuming that selectivity is 
asymptotic when it is actually dome-shaped will lead to an over-estimate 
of M using a catch curve-based estimator of M. 

M has traditionally been estimated ‘outside’ of the assessment using 
methods based on maximum age, life history theory, and relationships 
between “well-known” (those found in the literature) values for M and 
covariates, use of tagging data and catch curve analysis (Punt et al., 
2021b; Maunder et al., 2023). However, estimates of M from these ‘in
direct’ methods can be substantially in error (Kenchington, 2014 in
dicates errors of 50–200%), and best practice is to estimate M (usually a 
constant independent age, sex and time) within an assessment with a 
prior based on information sources that are not included in the assess
ment. The estimates of M from stock assessments will be most reliable 
when the data are from an area closed to fishing and immigration and 
emigration (so the only source of mortality is natural), during fishing 
moratoria, or if age-composition data are available from when the 
population was essentially unfished (e.g., Punt et al., 2001 for the 
Australian stock of blue grenadier, Macruronus novaezelandiae), but 
these are rare situations. Estimates of M in the self-tests were quite 
precise especially when a prior on M was provided (Table S.5). However, 
estimates of M from actual stock assessments can be substantially in 
error if the assessment is mis-specified. Consequently, almost all esti
mates of M should be considered as being potentially grossly in error. 

If M is to be set outside of the assessment model using an ‘indirect’ 
method, care needs to be taken to check that the pre-specified value is 

consistent with the remaining data sources (e.g., see Haddon, 2017) for a 
case where the pre-specified value for M is not consistent with the es
timate from the data) and that it is based on the most appropriate 
method. Hamel (2015) provides an approach that uses multiple data 
types (maximum age, relationship with the von Bertalanffy K parameter, 
and relationship with the gonadosomatic index) to create a distribution 
for M, although a distribution based only the maximum age appears to 
be adequate in most cases (Hamel and Cope, 2022). It will be infeasible 
to estimate M in most data-limited situations, and in such cases, it is best 
practice to provide assessment results and management advice for a 
range of approaches for estimating M indirectly given the error associ
ated with all indirect methods for estimating M (Cope and Hamel, 2022) 

Although most assessments assume M is independent of age, time, 
size, density, and sex, this is unlikely to be the case in actuality. Age- 
specific natural mortality can be estimated as discrete changes in M 
that may coincide with the onset of sexual maturity (e.g., eastern Bering 
Sea snow and Tanner crab Chionoecetes opilio and C. bairdi; Stockhausen, 
2019; Szuwalski, 2019). However, best practice is to assume that M is a 
continuous function of age (or size) and model it using, for example, the 
Lorenzen (1996) or Siler (1979) curves. The Siler formulation allows for 
senescence but has more parameters than the Lorenzen formulation and 
has consequently only used rarely in practice (e.g., Punt et al., 2014a). 

It would be ideal to model time-varying M by estimating it from the 
monitoring data within an assessment, using for example an assessment 
model formulated as a state-space model (e.g. Berg and Nielsen, 2014; 
Nielsen and Berg, 2016; Stock and Miller, 2021) instead of prespecifying 
it from trends in consumption (e.g., Dorn and Barnes, 2022), indices of 
starvation (e.g., Regular et al., 2022) or from data on disease prevalence 
(e.g., Trochta et al., 2022) as these indices only reflect a single source of 
natural mortality. Information from these sources could, however, be 
included in an assessment in the form of data on natural mortality, sensu 
the approach used in Stock Synthesis for indices of recruitment or to 
justify the need for time-varying natural mortality. However, given that 
natural mortality is often confounded with other parameters, the esti
mates of M estimated internally within the assessment may be unreliable 
(or even implausible), supporting, in that situation, the use of externally 
derived values for natural mortality. 

Modelling M that varies over time is typically done as either a 
random walk or as discrete changes (see Jiao et al. (2012) for an 
age-structured statistical catch-at-age model that allows for a variety of 
formulations for age- and time-variation in natural mortality). The 
random effects state-space models SAM and WHAM allow M to change 
over time and age. These methods estimate the extent to which M varies 
over time and age, such that if the data do not support time- and 
age-varying M, the extent of variation in M is estimated to be near zero. 
Use of a state-space formulation for the population dynamics model and 
estimating time- and age-varying M is therefore best practice. 

In principle, time- (and age-) varying M can be estimated using 
multispecies models such as multispecies Virtual Population Analysis 
(Magnusson, 1995) or multispecies statistical catch-at-age analysis (e.g., 
Jurado-Molina et al., 2005, 2006; Van Kirk et al., 2010, 2015; Holsman 
et al., 2016). However, multispecies models do not estimate the effect of 
disease and starvation, and the results of multispecies assessment 
models are often not robust to model structure. The relative sizes of 
M-at-age from multispecies models can, however, be used in 
single-species models, e.g., as the basis for priors. 

3.4. Recruitment 

How recruitment is modelled in a stock assessment impacts not only 
the estimates of the population dynamics and hence biomass, but also 
reference points and measures of sustainable yield. Thus, stock 
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assessments based on age- and size-structured population dynamics 
models must estimate annual recruitments as well as the relationship 
between spawning biomass5 and subsequent recruitment. However, the 
relationship between spawning biomass and recruitment is often diffi
cult to detect, particularly when the range of spawning biomasses for 
which reliable estimates of recruitment are available does not include 
points at both low and high stock size. Meta-analyses (e.g., Szuwalski 
et al., 2015) have found that the data for few stocks strongly support the 
effect of spawning biomass on recruitment and that many stocks are 
better characterized as being driven by the environment and display 
“regime shifts” in which the mean expected recruitment changes 
significantly over time. 

Recruitment is variously defined as the number of animals entering 
the fishable population, the number of age-0 animals and the number of 
animals entering the first size-class in a size-structured population dy
namics model. In the first two of the cases, care need to be taken to 
correctly account for the lag between spawning and recruitment when 
defining the stock-recruitment relationship. In the third case, stock- 
recruitment relationships are seldom modelled because the numbers 
entering the first size-class will often consist of the animals from 
spawnings in multiple years. Although slightly more computationally 
intensive, it is best to model the population from age-0 to reduce errors 
associated with mis-specifying the lag between spawning and offspring 
entering the population. 

Recruitment during year y, Ry, is modelled using the generic form: 

Ry = f (Sy− L)e− εy− L − by− Lσ2
R/2 εy ∼ N(0; σ2

R) (2)  

where f(), is the stock-recruitment relationship, L is the time-lag be
tween spawning and when recruits enter the model, Sy is the spawning 
biomass during year y, εy is the recruitment residual for year y, σR is the 
extent of variation in recruitment about the stock-recruitment rela
tionship, and by is a factor to ensure that expectation of recruitment at a 
given level of spawning biomass equals the value of the deterministic 
component of Eq. 2 (Methot and Taylor, 2011). The value for by can be 
particularly consequential for years for which recruitment deviations 
are estimated but there is little data on the associated deviations. It 
should be set to 1 for all years if the stock assessment is based on a 
state-space model (frequentist or Bayesian). 

The form of the relationship between spawning biomass and 
recruitment is conventionally assumed to be one of the Beverton-Holt, 
Ricker, or hockey-stick relationships, but the assumption that recruit
ment is independent of spawning biomass is also common, particularly 
for size-structured stock assessments. The conventional stock- 
recruitment formulation can be extended with a third parameter (e.g., 
Deriso, 1980; Shepherd, 1982; Punt and Cope, 2019; Liermann and 
Hilborn, 1997), including to allow for depensation at low stock size and 
to ensure than BMSY (the biomass associated with Maximum Sustainable 
Yield, MSY) is achieved at a pre-specified fraction of unfished biomass. 
Special forms of the stock-recruitment relationship exist for 
low-productivity species (e.g., Taylor et al., 2013), but these forms are 
seldom used in stock assessment and usually the estimates of biomass 
(but not necessarily of the relationship between sustainable yield and 
fishing mortality) are robust to the form of stock-recruitment function 
given reliable estimates of recruitment. 

It is desirable to include environmental covariates into the stock- 
recruitment relationship. This can be achieved by extending Eq. (2) to: 

Ry = f (Sy− L)e− εy− L+g(X)− by− Lσ2
R/2 (3)  

where X is a set of environment covariates and g is a function (usually a 
linear model) linking the environmental variables to the deviations in 

recruitment about the stock-recruitment relationship. Disadvantages of 
this approach are that the covariates needed to be measured without 
error and should be available for all years. Eq. (3) also changes the 
meaning of σR to the extent to variation in recruitment about the stock- 
recruitment relationship not explained by the covariates. An alternative 
approach (Crone et al., 2019) is to model recruitment using Eq. (2) and 
add a component to the likelihood function to reflect that the covariate 
data provide an index of the εy, i.e.: 

εy = g(X)+ ηy ηy ∼ N(0; σ2
η) (4)  

where ηy measures the model and unexplained variation (e.g., due to 
measurement error), and ση determines the uncertainty about the rela
tionship between the recruitment deviations and the environmental 
covariates. A challenge with this approach is how to set ση, which de
termines how closely the recruitment deviations match the expectations 
from the covariate data, although approaches such as cross-validation 
may be useful here. Eq. (2) can be extended by allow the autocorrela
tion among the recruitment deviations to be estimated and Johnson 
et al. (2016) compare alternative methods for estimating the extent of 
auto-correlation in recruitment. Auto-correlation in recruitment can be 
important for projections. 

The parameters of the stock-recruitment relationship can be char
acterized by a parameter that determines the scale of the population, 
usually R0, the recruitment at unfished equilibrium, and at least one 
parameter that determines the shape of the stock-recruitment relation
ship. For the Ricker and Beverton-Holt stock-recruitment relationships, 
this parameter is often “steepness” (the proportion of unfished recruit
ment when the population is reduced to 20% of its unfished level). The 
parameters of the stock-recruitment relationship are usually very diffi
cult to estimate (Lee et al., 2012; Fig. S.6), leading to the use of priors for 
steepness (e.g., Dorn, 2002; Thorson et al., 2019), or more generally the 
parameter that determines the slope of the stock-recruitment relation
ship at the origin. In principle, priors can be included in an assessment 
and the parameter then estimated, but it is also common to set the 
parameter determining the shape of the stock-recruitment relationship 
to the mean (or median) of its prior. 

In principle, the parameters of Eq. (2) could change over time, 
including as a function of covariates or due to an abrupt change, but 
while some examples exist (e.g., Berger, 2019; Wayte, 2013), this is 
unusual (but can be consequential in terms of stock status and estimates 
of sustainable yield). If allowance is made for time-variation in the pa
rameters of the stock-recruitment relationship, a parameterization based 
on the slope at the origin and the density-dependence parameter is 
preferable. 

In principle, the stock-recruitment relationship can be estimated 
outside of the assessment by fitting the population dynamics model 
ignoring the stock-recruitment relationship and taking the resulting 
estimates of recruitment and spawning biomass and fitting a stock- 
recruitment relationship. However, this is not considered best practice 
as it leads to inconsistent estimates / assumptions between how the 
recruitments are estimated and the resulting stock-recruitment 
relationship. 

4. Diagnostics and data weighting 

4.1. Diagnostics 

Diagnostics are applied as part of the stock assessment process to 
select a “best” model, select a set of models to include in an ensemble, or 
to be part of a scheme to weight a set of models that might be used in an 
ensemble. An additional aim of diagnostics is to attempt to identify those 
aspects of a model that may be mis-specified. Maunder et al., In press 
reviewed (a) which diagnostics are able to identify model 
mis-specification, (b) can diagnostics identify what aspect of a model is 
mis-specified, and (c) how can an identified mis-specification be 

5 Good practice is to use the best measure of reproductive output such as a 
measure of fertilized egg production rather than spawning biomass. 
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addressed. Overall, a model would be considered adequate for providing 
management advice if the optimization was successful, the model fits the 
data adequately (e.g., based on residual analysis), the model provides 
reliable estimates of trends and scale, the results of the model are 
consistent when updated with new data (e.g., retrospective analysis), 
and the model is able to make adequate future predictions (e.g., hind
casting) (Carvalho et al., 2021). 

It is generally best practice to apply a range of diagnostics. The di
agnostics used most commonly are:  

• Convergence diagnostics. For stock assessments based on maximum 
likelihood or penalized maximum likelihood, these include checking 
that the final gradient of the model is small, that the Hessian matrix 
can be inverted, and that jitter analyses (generally) lead to the same 
solution. For Bayesian analysis, these include checking that the 
method used to sample from the posterior (usually a Markov chain 
Monte Carlo [MCMC] algorithm) shows no evidence for non- 
convergence.  

• Residual diagnostics. Standard residual diagnostics examine whether 
the assumed standard deviations and effective sample sizes match 
the sizes of the residuals and that there is no evidence for “patterns” 
in the residuals (within a data set and between data sets) based on 
the “runs” test or generalizations thereof. Probability integrated 
transformed (PIT) residuals likely perform better than traditional 
Pearson residuals but at present few assessment packages compute 
these residuals (Maunder et al., In press). Similarly, one-step ahead 
residuals are most appropriate for correlated observations (Trijoulet 
et al., 2023). Examination of residuals within state-space models 
remains a research area while posterior predicted distributions from 
Bayesian analysis provide a basis for assessing model fit based on the 
ability to mimic the data used for model fitting.  

• Retrospective analysis. Retrospective analysis allows a comparison of 
the consistency of model outputs (e.g., spawning biomass, recruit
ment and fishing mortality and model outputs such as MSY) as 
additional data are added to an assessment. The results of a retro
spective analysis are often summarized using Mohn’s rho (Mohn, 
1999). Hurtado Ferro et al. (2015) provide guidelines for what 
constitutes a ‘major’ retrospective pattern. Several studies have 
explored factors that can cause a retrospective pattern in an assess
ment (e.g., Legault, 2009). The Rose approach (Legault, 2020) 
currently provides the most comprehensive way to examine possible 
causes for retrospective patterns and provide an integrated result 
based on models that address the retrospective pattern.  

• Hindcast cross-validation. Kell et al., (2016, 2021) introduced a 
diagnostic based on evaluating prediction skill, defined as the ability 
to predict an observed quantity (index values, and summary statistics 
for age-compositions, length-compositions, and tagging data) using 
an assessment that has had some of the data removed. The results of 
this diagnostic are summarized using the MASE (mean absolute 
scaled error) statistic, with a value of 1 taken as threshold between 
the assessment having some predictive skill (at least for the observed 
data) versus effectively no predictive skill.  

• Likelihood profiling. The likelihood component profile provides a way 
to identify the influence of information sources on model estimates, 
and a difference in the best estimates of a parameter (or derived 
quantity) between information sources is suggestive of data conflicts 
(e.g., Ichinokawa et al., 2014). The R0 profile is most common 
(although profiles for natural mortality, stock-recruitment steepness 
and current biomass are also conducted), and is used to identify 
conflicting information in the data about absolute abundance. 
However, the performance of this diagnostic was found to be poor in 
the simulation study conducted by Carvalho et al. (2017). 

• Other diagnostics. Some diagnostics (e.g., the Age-structured Pro
duction Model, ASPM, diagnostic; Maunder and Piner, 2015; Min
te-Vera et al., 2017; the catch curve diagnostic; Carvalho et al., 2017) 
have been developed specifically for fisheries assessments. The 

ASPM diagnostic was developed to assess whether surplus produc
tion and observed catches alone could explain the trend in the index 
of abundance and hence whether the data (i.e., the indices of 
abundance) provide information on the scale of the population. The 
catch curve diagnostic was also developed to assess whether the 
composition data are consistent with the index data, but simulations 
by Carvalho et al. (2017) concluded that it performed poorly (high 
level of Type I error). 

Overall, the ideal is to apply as many diagnostic analyses as possible, 
along with running sensitivity analyses to explore sensitivity even 
within a model that exhibits no obvious problems, recognizing that 
currently available diagnostics are not guaranteed to identify all prob
lems or uncertainties. Carvalho et al. (2017) found that applying mul
tiple diagnostics was likely to identify more problems, without a major 
increase in ‘Type I error’, i.e., incorrect reject of a correctly specified 
model. Few assessments apply all of the above diagnostics and the 
minimum set would seem to be to evaluate convergence and model fit 
(as summarized using residuals) and to conduct a retrospective analysis 
and construct likelihood profiles. The hindcast and the ASPM di
agnostics can be used to better understand the “value” of the assessment 
(for example, is it any better than a simple AR-1 process) and its prop
erties. Weighting of alternative model configurations using diagnostics 
remains a research area unfortunately. 

4.2. Data weighting 

Data weighting is important in contemporary integrated analysis- 
based assessments as these assessments use multiple data types, and 
conflicts among data types can have substantial impacts on management 
advice, quantification of uncertainty, and model selection (Maunder 
et al., 2017 and references therein). Maunder and Piner (2017) state that 
the appropriate method to deal with data conflicts depends on whether 
it is caused by random sampling error, process variation, observation 
model misspecification, or misspecification of the population dynamics 
model. It is good practice to routinely examine the sensitivity of the 
model results to data weights and this is common when assessments are 
conducted, but the ‘base’ levels of weights will determine the set of 
sensitivity tests conducted and consequently need to be set based on 
objective criteria. Francis (2011) advises that data weights be selected so 
that indices of abundance are able to be fitted well and that correlations 
are allowed for when weighting composition data thus giving “prefer
ence” to the indices over the compositions when there is conflict. 
However, there is no general consensus on this, although it is philo
sophically consistent with the ASPM diagnostic. 

The weight assigned to each data source (and prior / penalty) de
pends on a variance parameter (usually a standard error for indices and 
catches, and an effective sample size for the composition and tagging 
data). The data weights should reflect the sampling error associated with 
the data (given the way the data are included in the assessment). For 
example, composition data are treated as independent samples from the 
catch/population whereas actual samples for age- and size-composition 
are usually based on some form of hierarchical sampling process (e.g., 
Francis, 2017), leading to perhaps considerable overdispersion and 
hence actual sample sizes grossly over-estimating effective sample sizes. 
The data weights will also (unintentionally perhaps) capture some of the 
model error (e.g., time-variation in selectivity will be reflected as lower 
estimated effective sample sizes – the so-called “downweighting’ 
approach to dealing with model mis-specification). 

The approaches to data weighting can be divided into (a) choice of 
the probability distributions for the data (traditionally log-normal for 
indices, multinomial for composition data, and Poisson or negative 
binomial for tagging data), and (b) setting of the variance parameters. 
Two approaches to selecting data weights have emerged: (a) ‘tuning’ of 
variance parameters, and (b) estimating variance parameters. Estima
tion of variance parameters (e.g., by adopting a Dirichlet or Dirichlet- 
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multinomial distribution for composition data; Francis, 2017; Thorson 
et al., 2017; estimating residual variances: Nielsen and Berg, 2014) is 
intuitively preferable, including because the uncertainty owing to data 
weighting is captured within the measures of uncertainty from the 
assessment. However, this approach is not without its problems. For 
example, conflicting data can lead to some data sources being substan
tially upweighted and others assigned near-zero weights. Estimation of 
data weights is more natural within the Bayesian and state-space for
mulations for assessments given that they are better placed to estimate 
variance parameters. 

Tuning methods have been applied to composition data. Until 
recently, the weights assigned to composition data (under the assump
tion of multinomial sampling) was that of McAllister and Ianelli (1997). 
However, that method ignores correlations in residuals among age-/si
ze-classes and can hence over-weights composition data. Francis (2011) 
introduced methods that weight age- and size-composition data that 
allow for correlations among residuals within years (but not among 
years and data sets, which can occur: Thorson et al., 2017) and the use of 
this weighting scheme (and that developed by Punt (2017)) for condi
tional age-at-length data) is good practice when data weights are based 
on tuning. Most tuning algorithms are based on multiplying input 
sample sizes by a tuned constant. However, this implies that the relative 
pattern of effective sample sizes will be robust to the tuning process. 
Francis (2017) suggests that the additional variance estimated for 
composition data likelihoods might need to be additive rather than 
multiplicative (i.e., weighted by the relative sample size) to represent 
process variation, which may be relatively constant over time and not 
proportional to the sample size. However, to date few assessments are 
use additive weights for composition data (unlike index data where this 
is standard). 

4.2.1. Tentative best practice for data weighting 
The set of models considered for data weighting should all satisfy the 

criterion that there is no evidence for model mis-specification based on 
diagnostics (see Section 4.1). Then initial weights need to be set, for 
example, by setting the initial standard error for the indices by fitting 
smooth functions (e.g., splines or a loess smoother) to them and setting 
the initial standard errors to the resulting residual standard errors. The 
initial effective sample sizes for age- and size-composition data should 
be based on methods such as that of Stewart and Hamel (2014), which 
account for both the number of animals aged/measured and the number 
of sampling units (hauls, trips, vessels, etc). Good practice remains use of 
tuning methods and those outlined above, along with that of Punt et al. 
(2017) for tagging data, which should be applied along with 
re-estimation of the index residual standard errors until convergence. 
Care needs to be taken when applying methods such as those of Francis 
(2011) when the data set contains data for only a few years. Table 2 lists 
an approach used in Australia for setting the variance parameters in 
Stock Synthesis-based assessments. 

5. Discussion and a tentative recipe 

The ultimate aim of a fisheries stock assessment is to support man
agement decision making. This can take the form of providing estimates 
of biomass in absolute terms or relative to management reference points, 
which can then be synthesized, for example, in the RAM Legacy database 
(Ricard et al., 2012). The results of syntheses and meta-analyses can be 
used to better understand the status of world fisheries, the factors that 
are more likely to lead to achievement of management objectives (e.g., 
Hilborn et al., 2020), and to examine questions such as whether growth 
varies over time (Stawitz et al., 2015) and what are the primary drivers 
of recruitment (e.g., Szuwalski et al., 2015). The results of stock as
sessments also support application of harvest control rules that deter
mine limits on catches or fishing effort for specific fisheries and to 
parameterize the operating models that are used to compare the per
formances of alternative harvest strategies. 

The major challenges related to conducting stock assessments are 
that the data available for assessment purposes are seldom collected in 
an ideal manner. For example, data are rarely available from the start of 
the fishery, there are rarely fishery-independent data, and sampling for 
fishery-dependent data relies on the operations of the fishery and may 
not be representative of the populations being assessed. Moreover, the 
nature of fisheries and their operations means that the trend of the 
population may be uninformative about key population dynamics pro
cesses (e.g., one-way trips in biomass and fishing mortality are less 
informative than biomass and fishing mortality trajectories that exhibit 
contrast; Hilborn, 1979; Magnusson and Hilborn, 2007). These chal
lenges are inherent to the populations being assessed and cannot be 
removed through analysis – but their consequences should be docu
mented in assessments. 

Another set of challenges relates to the time, software, and compu
tational constraints confronted by analysts conducting assessments. 
While the availability of stock assessment packages (see Dichmont et al., 
2021 for a recent summary) reduces these challenges, it remains almost 
impossible, for example, to conduct a Bayesian analysis using the MCMC 
algorithm during an assessment review meeting (although work is being 
understand the speed up runtimes for Bayesian analyses, e.g. Monnahan 
et al., 2017, 2019), and it is not uncommon for existing stock assessment 
packages not to include all the features that seem pertinent for a case 
study. Two key consequences of this are that this paper has focused on 
the expectation that good practices and not necessarily best practices are 
the current gold standard in the field, and that regular updates to as
sessments and good/best practices are necessary. 

5.1. Data-rich catch-at-age and -at-length assessments – what about other 
assessments 

This paper has focused on good (and best) practices for single-species 
stock assessments for data-rich stocks. The question arises whether the 
same practices can be applied to data-limited species and multispecies / 
ecosystem models. My opinion (and that of the authors of the paper on 
next generation stock assessments, Punt et al., 2020) is that assessments 

Table 2 
Example of how variance parameters are set for stock assessments conducted for 
groundfishes in southeast Australia. The algorithm is predicated on having 
selected the model structure including the fleets and having appropriately 
standardized the catch and effort and composition data for inclusion in the 
assessment.  

Step Description 

1 Remove all compositions with “extremely small” (e.g. < 100) sample sizes to 
avoid plots being dominated by results for which fits should not be expected 
to be good. 

2 Set the initial weights for survey indices to their sampling CVs and for CPUE 
indices to the residual standard error about a loess smoother to the indices. 

3 Select the basis for initial weights for the compositions (e.g., trip numbers or 
hauls or the formula developed for the US West Coast by Stewart and Hamel, 
2014). 

4 Run the assessment and compute the weights for the composition data based 
on Francis (2011) 

5 Adjust the effective sample sizes for the composition data based on 
multiplying the current effective sample sizes by the multipliers from step 4. 

6 Run and the assessment and compute the weights for the conditional age-at- 
length data based on the algorithm in Punt (2017). 

7 Adjust the effective sample sizes for the conditional age-at-length data based 
on multiplying the current effective sample sizes by the multipliers from steps 
4 & 6. 

8 Repeat steps 4–7 
9 Adjust the bias ramp and update the value of σR using the approach of Methot 

and Taylor (2011). 
10 Update the standard errors for the survey and CPUE index data so the 

assumed standard errors or coefficients of variation match the variances in 
the residuals about the fit to the model. 

11 Repeat step 9 
12 Repeats steps 4–7  
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for data-limited species should be based on the same approaches as those 
for data-rich stocks, recognizing that the range of uncertainty will be 
greater. Many stock assessments can be applied in a data-limited context 
using models and estimation methods applied in data-rich cases (e.g., 
Simple Stock Synthesis, Cope, 2013, requires only catch data, while 
SS_CL, Rudd et al., 2021 and LIME, Rudd and Thorson (2018) descrive 
stock assessment packages that can be applied using only 
length-composition data) and that is best practice. The use of methods 
that can be shown to be biased, if not statistically incorrect (e.g., 
methods based solely on catch data have been shown not be able to 
estimate stock status relative to reference points adequately; Free et al., 
2020; Ovando et al., 2022) should be avoided even if they seem to be 
very easy to apply. 

Multispecies and ecosystem models are not used for tactical man
agement, although applications of multispecies stock assessment 
methods such as CEATTLE (Holsman et al., 2016; Adams et al., 2022) 
could be based on most of the good practices outlined in this paper. Care 
would need to be taken regarding how any predation functions were 
chosen and parameterized given that the results of multispecies models 
can differ markedly depending on how predation is modelled (Kinzey 
and Punt, 2009; Plagányi, 2007). Ecosystem models (e.g., Ecosim, 
Atlantis) are currently only used as the operating models for the appli
cation of MSE and are seldom fitted to data (however, this is becoming 
increasingly common for Ecosim models; e.g. Heymans et al., 2016; 
Scott et al., 2016). Nevertheless, these models are increasingly being 
reviewed using the same processes as the single-species assessments 
used for status determination, and guidelines are starting to emerge (e. 
g., Kaplan and Marshall, 2016). Good (and best) practices for these types 
of models should ultimately be based on the types of issues, and the ways 
they are best addressed, as outlined above. 

5.2. Inside vs outside 

In general, it is undesirable to estimate parameters outside of the 
fitting of the assessment model to the data, e.g., fitting a growth curve to 
length-at-age data and then assuming that the resulting growth curve is 
‘known’. This is because fixing parameters will lead to under-estimation 
of uncertainty as reflected in standard errors and confidence intervals 
from a single model run, thereby highlighting the value of (and need for) 
an ensemble approach. In addition, it is not uncommon when estimating 
parameters outside of an assessment to make assumptions that are not 
consistent with those in the assessment such as assuming that there is no 
length selection when fitting a growth curve and then estimating length 
selection in the assessment model. The most common parameters that 
can be estimated outside of the assessment are the weight-length rela
tionship and the relationship between age/length and being mature 
because the data to determine these relationships are rarely included in 
the model likelihood. 

Weight-at-age can be estimated outside of the assessment when the 
sampling program is such that weight-at-age can be well estimated and 
weight-at-age changes in a complex way that would be hard to quantify 
using a parametric model. Nevertheless, while growth can be estimated 
outside an assessment, it is preferrable to estimate it within the assess
ment because this enables consistency of assumptions between how the 
growth function is estimated and the population dynamics are modelled 
and to ensure that uncertainty when estimating growth is propagated to 
all of the management-related quantities (Maunder et al., 2016). 

In general, the rule to apply when deciding whether to estimate a 
parameter within an assessment is whether the data in the assessment 
inform the estimate of that parameter, something that can be explored 
using likelihood profiles, and whether some of the parameters are almost 
completely confounded given the available information, as indicated by 
large values for off-diagonal elements of the correlation matrix for the 
parameters. 

5.3. Modelling time-varying parameters 

Most population processes in a stock assessment vary over time. 
However, it is desirable to assume that parameters are time-invariant in 
assessments based on the integrated approach because this reduces the 
number of estimable parameters. Moreover, it is not the case that as
sessments should (or can) estimate time-variation in all processes. Good 
practice would be to estimate deviations in recruitment about the stock- 
recruitment relationship, deviations in growth parameters over time, 
and deviations in selectivity about expected selectivity. It is less com
mon to estimate time-variation in other parameters (such as natural 
mortality, the parameters of stock-recruitment relationship, and move
ment). However, there are an increasing number of cases where natural 
mortality is allowed to be time-varying (e.g., Berg and Nielsen, 2014) 
and changes over time in R0 are modelled in a small number of assess
ments (e.g., Wayte, 2013). 

Traditionally, selectivity was assumed to be time-invariant (by fleet) 
within assessments based on the integrated approach, and this remains 
the default for most assessments. However, selectivity is a function of 
fishing and biological processes. Consequently, it is unlikely to be ho
mogeneous over space and time at the population level, and hence the 
constant selectivity assumption implied by selectivity in Eq. 1 not 
depending on y as well as a is often violated (Martell and Stewart, 2014). 
This suggests that time-varying selectivity should be assumed for most 
fisheries (Maunder et al., 2014). However, estimating selectivity 
changes over time can be difficult, and relies on having good data and a 
clear understanding of the fishery characteristics. Ignoring temporal 
changes in selectivity can produce biased estimates of management 
quantities (Punt et al., 2014b) and underestimate uncertainty. Maunder 
et al. (2014) and Punt et al. (2014b) recommended multiple diagnostics 
(based on residuals, profiles, retrospective patterns, values for infor
mation criteria, etc) be examined before increasing model complexity by 
allowing for time-varying selectivity. The issues of 
over-parameterization can be overcome by fitting the stock assessment 
as a space-space model (c.f., Nielsen and Berg, 2014; Stock and Miller, 
2021). Privitera-Johnson et al. (2022) found that estimation of 
time-variation in selectivity did not lead to appreciable improvements in 
performance when the true time-variation was random without trend. 

Care should be taken when estimating time-variation in parameters 
to remove retrospective patterns because adding a source of process 
error (e.g., for M, selectivity, growth) can ‘resolve’ apparent model- 
misspecification evident from retrospective analyses, even when the 
cause of the retrospective pattern is not unmodelled trends in the process 
assumed to varying over time (Szuwalski et al., 2018). 

5.4. Assessments, MSE and projections 

It is not the aim of this paper to provide good practices for con
structing the operating models used for MSE or for calculating reference 
points and conducting projections. However, the process of fitting 
operating models to data (‘conditioning’) has many of the features of 
conducting a stock assessment, except that the aim is to find a set of 
model configurations that are able to mimic the available data and to 
‘capture the full range of uncertainty’ (Punt et al., 2016). As such, unlike 
many assessments that aim to identify a set of parsimonious models on 
which to base management advice, the aim for MSE is to identify a broad 
range of model configurations. 

5.5. A tentative good practice schema for single-species stock assessment 

Conducting a stock assessment is necessarily a multi-step and often 
iterative exercise (see Table 3 for some specific suggestions, and Table 4 
for some comparisons between good and best practices). 

The first step is to evaluate what is known about the stock to be 
assessed within the region in which it is located as well as for other 
regions (for similar populations, stocks and species), with the intent to 
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identify a set of hypotheses that can be either included in the assessment 
or documented as something for future work (e.g., whether M varies 
over time based on condition factor data, Bjornsson et al., 2022). The 
step will also review and document the management history, the needs 
of the management agency to which the assessment will be presented, 
and the recommendations arising from any previous assessments and 
their peer reviews. A key aim of this step is to identify stock structure 
hypotheses and to ensure that the stock assessment addresses the needs 
of the management body. The structure of an assessment will differ 

(perhaps substantially) if the aim is to examine local depletion effects, to 
assess whether some environmental process impacts recruitment, 
growth, selectivity, or natural mortality, with a view to conducting 
long-term projections to examine the consequences of climate change, or 
to support application of a harvest control rule for the entire population. 
Another aim of this step would be to determine whether it is likely that 
some population process (e.g., growth, recruitment, natural mortality, 
the stock-recruitment relationship, and movement) would be 
time-varying.6 

The next step is to conduct a data inventory and examine how 
representative the data are given when, where and how they were 
collected (i.e., whether the data from a fishery or survey cover the range 
of the stock or the area to which they are assumed to be pertain). This 
step should include an evaluation of whether best practices are applied 
to compute the input data (e.g., Maunder and Punt, 2004, for 
catch-effort-based indices). This step, along with the earlier step, will 
help to select the model time-step, and whether spatial structure needs 
to be included explicitly in the assessment (i.e., using a spatial model) or 
implicitly (using the ‘areas as fleets’ approach). For example, evidence 
for different trends among fleets that operate in different areas provides 
support for the development of a spatial model. This step also involves 
computing the initial values for the variance parameters used to weight 
the data and the values of the parameters of the priors for the parameters 
related to growth, natural mortality, selectivity and recruitment. 

By default, the parameters determining (temporally and spatially 
invariant) population parameters should be estimated but perhaps with 
(very) informative priors. Subsequent analyses could lead to parameters 
being fixed to those estimated using auxiliary information. The de
viations in recruitment about the stock-recruitment relationship should 

Table 3 
Tentative good practices for conducting assessments.  

Basic formulation  
1. Determine the stock structure hypotheses and whether there is a need to consider 

spatial variation in population structure.  
2. Identify the maximum possible number of fleets and surveys (based on spatial, 

temporal, and gear considerations).  
3. Apply regression tree and other methods to the composition and index data to 

identify the set of fleets and areas to consider in the model. 
Constructing data inputs  
4. Apply best practices guidelines to construct the index and composition. The use of 

spatio-temporal models is preferred, especially for surveys but also for fishery 
CPUE (Thorson et al., 2020).  

5. Compute the initial weights for the data (and priors). 
Spatial models, time-steps, etc  
6. Base the assessment on an age- or size-structure population dynamics model with 

two sexes.  
7. Decide whether to conduct the assessment using a spatial model or the ‘areas-as- 

fleets’ approach based on preliminary analyses of the data and basic knowledge of 
the population.  

8. Select the number of age- and size (length)-classes. Unless there is good evidence 
not to do so, more classes, particularly for the population model, are to be preferred 
– note that the classes for the observation model can be coarser than those for the 
population.  

9. Select the model time-step. This can be annual unless growth is fast during the year.  
10. Estimate the initial age-/size-structure as deviations about an equilibrium 

expectation (fished or unfished) 
Population processes (basic formulation)  
11. Estimate growth within the model using a general model (e.g., Schnute), unless 

the model is to be fitted only to weight-at-age. It may be necessary to place priors 
on some of the parameters (particularly if the model is to fitted only to length- 
composition data; i.e. no conditional age-at-length data). The extent of variation 
in growth should be estimated from the data as well as the parameters deter
mining expected length-at-age.  

12. Estimate natural mortality for adults and adopt a Lorenzen relationship between 
M and age. Place a prior on adult M based on auxiliary analyses (e.g., using the 
approaches of Hamel, 2015 and Hamel and Cope, 2022).  

13. Fit a two parameter (usually Beverton-Holt) stock-recruitment relationship with 
both parameters estimated (but with a prior on the parameter that determines the 
slope of the relationship at the origin – usually steepness). Apply a bias-correction 
factor based on Methot and Taylor (2011). Allow for auto-correlation in 
recruitment deviations temporally and perhaps spatially. 

Selectivity  
14. Assume that selectivity is time-invariant for surveys and allow for time-variation 

for fishery selectivity. Assume at least one fishery/survey has asymptotic selec
tivity in at least one area and assume a double normal selection pattern for the 
remaining fleets/ surveys (with selectivity for some fleets perhaps constrained to 
be asymptotic). 

Time-variation in parameters  
15. Allow for time-variation in parameters if supported by residual diagnostics / to 

eliminate retrospective patterns. 
Data weighting and model fitting  
16. The resulting residual variances should match the assumed variance for the data, 

ideally select likelihood functions so that the data weights can be estimated (e.g., 
Dirichlet-multinomial distribution for composition data).  

17. Fit the model using penalized likelihood but tune the variance parameters 
(seeTable 2). 

Diagnostics  
18. Apply all standard diagnostics. 
Final steps  
19. Conduct a qualitative and quantitative analysis of uncertainty, including an 

extensive sensitivity analysis, evaluation of likelihood profiles, etc.  
20. Comment on the assessment in the context of the management problem, the 

plausibility of results, and the extent of uncertainty.  
21. Document the data used for the assessment, and any recommendations related to 

model development and analyses for future assessments.  

Table 4 
Some key differences between good and best practices for stock assessment.  

Issue Best practice Good / adequate practice 

Model resolution Age-size model Age- or size-model 
Initial conditions Estimated Equilibrium but with 

variation in recruitment 
accounted for 

Spatial structure A spatial model fitted to 
tagging data 

The ‘areas as fleets’ 
approach 

Modelling process 
error 

State-space formulation 
with all variance 
parameters estimated 

Penalized likelihood with 
some data weights 
estimated but most tuned. 

Natural mortality A formulation that allows 
for high natural mortality at 
young and old ages 

Age-specific M (estimated 
adult M) 

Growth model Time-varying Richards 
model 

Von Bertalanffy growth 
curve 

Stock-recruitment 
relationship 

Tailored to stock in 
question (e.g.Taylor et al., 
2013 for low fecundity 
species) 

Beverton-Holt or Ricker 

Time-variation in 
parameters (M, 
growth, selectivity) 

Estimate for as many 
processes as is feasible 
given the information 
content of the data, and 
within the state-space 
formulation. 

Dealt with in an ad hoc 
manner 

Specifying priors Multivariate priors (e.g. 
between M, selectivity and 
steepness) 

Univariate priors 

Retrospective 
patterns 

Use the Rose / an ensemble 
approach 

Try various plausible time- 
variation in parameters to 
resolve the problem / 
downweight some data 
sources. 

Data weighting All variance parameters 
estimated 

Application of tuning 
methods  

6 These processes are always time-varying in reality, but what matters is if the 
effect is substantial for the population(s) being assessed. 
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be estimated for all years, accounting for a bias-correction factor 
(Methot and Taylor, 2011) to ensure the expected recruitment matches 
that from the assumed stock-recruitment relationship. In general, good 
(and best) practice for estimating any population parameter is to be 
guided by the data, involve trying alternative models, limiting 
complexity to the extent possible (more complex models should lead to 
clear improvements in fit), and ensuring that the resulting model out
puts for the process are plausible (Francis, 2016). 

The next step is to fit a model configuration (the ‘naive’ configura
tion) based on the above specifications and apply the data weighting 
steps in Section 4.2. Best practice would be to fit the model as a state- 
space model (as a frequentist or Bayesian analysis), but good practice 
is use of penalized maximum likelihood. If there is strong evidence that 
selectivity is time-varying, this first model could involve time-varying 
selectivity/retention, either using time-blocks based on when ‘known’ 
changes in selection and retention occurred or as random deviations 
about a parametric form, with the extent of variation in selectivity 
estimated using the approach of Xu et. (2019). The next step is to apply 
‘rejection’ diagnostics (i.e., convergence tests, residual analysis, and 
retrospective analysis) and, if needed, identify a set of alternative 
models that could address the aims of the assessment. The set of models 
would be pruned by those that still fail the diagnostics, perhaps leading 
to an overall summary using the ‘Rose’ approach of Legault (2020). 

The next steps of any assessment are to explore sensitivity to 
changing data weights, values for pre-specified parameters, and 
applying the ‘understanding’ diagnostics (e.g., hindcast evaluation, the 
ASPM diagnostics and plotting the results of previous assessments with 
those from the current base model configuration – or set of model 
configurations). The final step of the assessment is to quantify (to the 
extent possible) and document uncertainty, for example by computing 
the standard errors of the model outputs conditional on the model 
structure, conducting retrospective analyses, and examining the sensi
tivity of the results to changing some of the assumptions of the model. 
For most assessments the set of uncertainties that can be quantified will 
be small fraction of the true full range of uncertainty. This is most clearly 
the case for assessments that aim to make medium- and long-term pro
jections, e.g., to form the basis for rebuilding strategies. Nevertheless, 
quantification is uncertainty is important, especially in those jurisdic
tions that apply buffers to catch limits based on the extent of 
uncertainty. 

The use of the above approach would not be guaranteed to ensure 
that the resulting assessment outcomes are ‘correct’ but rather than the 
assessment has been conducted using current state-of-the-art good 
practices, and that are suitable to support management decision making 
as best as can be expected. The paper has focused on model fitting and 
there is a need for best practices for other aspects of stock assessment, 
such as development of data collection schemes, methods for summa
rizing basic monitoring data for use in assessments, the definition and 
calculation of reference points, the bases for forecasting, especially 
given the effects of climate change, how best to include stakeholders in 
the model building process, and how best to conduct reviews of stock 
assessments. 
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